O.P.Code: 23CS0504

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year II Semester Regular & Supplementary Examinations June-2025 DATA STRUCTURES

(Common to CAD, CSM, CCC, CIC, CAI, CIA, CSE & CSIT)

Time: 3 Hours

PART-A

(Answer all the Questions 10 x 2 = 20 Marks)

1 a Define ADT (Abstract Data Type).

CO1 L1 2M

		(Miswel all the Questions to X 2 20 Marks)			
1	a	Define ADT (Abstract Data Type).	CO ₁	L1	2M
	b	Compare binary search and linear search techniques.	CO ₁	L2	2M
	c	What are the ways of implementing linked list?	CO ₂	L1	2M
	d	How the singly linked lists can be represented?	CO ₂	L2	2M
	e	Define Stack.	CO ₃	L1	2M
	f	Give one example of a problem where backtracking algorithms are used.	CO ₃	L2	2M
	g	Define queue.	CO ₄	L1	2M
	h	Explain any two types of queues with a brief description.	CO ₄	L2	2M
	į	Define trees in data structure.	CO ₅	L1	2M
	j	Give any Two Applications of Graph.	CO ₅	L2	2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

2 a Define sorting. Explain any one sorting techniques.
b Explain about binary search.

OR

3 a Define searching. What is sequential search?

CO1 L1 5M

CO1 L1 5M

	b Differentiate linear and non-linear data structure.	CO ₁	L2	5M
	UNIT-II			
4	a Differentiate linked list and Array.	CO ₂	L2	5M
	b Explain the operations of singly linked lists.	CO ₂	L2	5M
	OR			
5	a Explain the applications of linked lists in detail.	CO ₂	L2	5M
	b Discuss about circular linked list in detail.	CO ₂	L2	5M
	UNIT-III			
6	a Explain the algorithm for Push and Pop operations on a Stack using Arrays	CO ₃	L2	5M

6	a	Explain the algorithm for Push and Pop operations on a Stack using Arrays with suitable examples.	CO3	L2	5M
	b	Describe the algorithm for converting an infix expression to postfix notation using a stack with a suitable example.	CO3	L2	5M
7	a	OR Explain the algorithm for Push and Pop operations on a Stack using Linked	CO3	L2	6M

,	64	Explain the digorithm for rush and rop operations on a stack using Entitled	COS		OIVE
		List with suitable examples.			
	b	Convert the following Infix into Postfix expression: A+(B*C)/D.	CO ₃	L2	4M
		LINET IV			

8	a	Describe the implementation of queues using arrays.	CO4	LZ	OIVI
	b	Discuss about Deques.	CO ₄	L2	4M
		OR			

		OR			
9	a	Discuss the applications of queues in breadth first search.	CO ₄	L2	5M
	b	Discuss about implementation of queues.	CO4	L2	5M
		UNIT-V			
10	_	Duild a Dinamy search Tree for the following values 45, 15, 70, 00, 10, 55	COF	T 2	ENT

10	a	Build a Binary search Tree for the following values 45, 15, 79, 90, 10, 55, 12, 20, 50.	CO5	L3	5M
	b	Explain Breadth First Traversal with Example.	CO6	L2	5M

		OR			
11	a Exami	ne Operations of AVL Tree.	CO ₅	L3	5M
	h Evnlai	n Minimum Spanning tree with simple example	COG	12	5M